Some Groundwater Quantity Concerns in the Central Sands

The Law of the Budget

Rich Uncle

Salary

 * \$ In - \$ Out = \pm \$ Balance

Birthday money from Grandma

The Law of the Budget

Mortgage

Kid's College Tuition

The Law of the Groundwater Budget

Recharge from precipitation

Rise / fall of the water table

Water In – Water Out = + Balance

Discharge to streams

Pumping from wells

www.anglingmatters.com

Removal of Woody Streambank Vegetation to Improve Trout Habitat

Technical Bulletin
DEPARTMENT OF NATURAL RESI

FIGURE 24. Relation of summer discharge to fall trout-carrying capacity in the Treatment Zone in the Little Plover River during 1970-77.

Jeff Dimick, University of Wisconsin – Stevens Point

WATER THE ON THE LAND

Watershill Certain

Hydrology of the Little
Plover River Basin
Portage County, Wisconsin
And the Effects of Water
Resource Development

GEOLOGICAL SURVEY WATER-SUPPLY P

Prepared in cooperation with the Wisconsin Conservation Department and the University of Wisconsin Geological and Natural History Survey

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
WATER RESOURCES DIVISION

EFFECTS OF IRRIGATION ON STREAM
IN THE
CENTRAL SAND PLAIN OF WISCONS

E. P. Weeks and H. G. Stangland

economy for many years. Along with these amenities, however, come a series of potential adverse impacts that demand careful attention before the current rate of irrigation progresses. Degradation of fish and wildlife habitats, drainage of extensive wetland environments, and regional declines in groundwater levels and streamflows are some of the major potential impacts needing immediate investigation.

eration with the of Natural Resources the Natural History Survey

1971 WISCONSII

Effects of irrigation

1970 –1/4 of the area irrigated

- normal summer stream loss: 25-30%
- normal summer water decline: 1/2 foot
- drought stream loss: 70-90%
- drought water decline:2-3 feet

Effects of irrigation

50% of area irrigated

-drought stream loss: 100%

- drought water decline: 4 - 5 feet

Long Lake, Waushara Co.

1950s

PLAINFIEL

1994

NORTH SHORE LONG LAKE

Little Plover @ Hoover: 1959-1987

L. Plover Water Budget

Weeks et al., 1962

Water in: 31-32 inches

Water out:

Surface runoff: 1"

Non-irrigated land ...

ET: 20-22"

GW runoff: 9-10 Irrigated land ...

ET: 24-26"

Hydrology of the Little

Watersled Certain

GW recharge: 5-6"

Predicted impacts of irrigation (current, normal):

- -Average annual baseflow loss: 9%
- -Summer flow loss due to irrigation: > 20%

Effects of V. Plover Wells

Village of Plover Pumping (monthly average)

Mechenich & Kraft Flow Model (1996)

2003 Record Low Flow

2005 Record Low Flow - August 9

Jeremy Wisz & Bryant Browne August 9, 2005

July 19 2006 Little Plover Dry-Up

Photos by Adam King and Kyle Homan

Little Plover Flow at Hoover Rd for 2006

Baseflow in the Little Plover did not rise up to what used to be the average flow, even during the spring of 2006. Flow increased until the middle of May and then dropped rapidly.

Dry-up at Bluebird Rd, July 19, 2006

Lessons Learned?

- Groundwater doesn't manage itself
- Monitoring & adaptive management important
- Aside: ¼ mile GPA concept would not have protected LPR nor future LPRs